Tiny, reusable sensing chip could lead to new point-of-care medical tests

2022-04-24 02:45:27 By : Ms. Michelle Zhuang

Click here to sign in with or

by Cory Nealon, University at Buffalo

The proliferation of point-of-care testing, from at-home blood glucose meters to COVID-19 rapid tests, is accelerating and improving medical care.

Continuing to upgrade the sensing technology that is fueling the growth of these products, however, is becoming increasingly challenging.

Some optical sensing chips, for example, contain nanostructures that are nearly as small as the biological and chemical molecules they're searching for. These nanostructures improve the sensor's ability to detect molecules. But their diminutive dimensions make it difficult to guide the molecules to the correct area of the sensor.

"It's kind of like building a new racing car that is more streamlined and therefore runs faster, but its door is made too small for the driver to enter the car," says Peter Q. Liu, Ph.D., assistant professor of electrical engineering at the University at Buffalo School of Engineering and Applied Sciences.

Liu—along with Xianglong Miao, a Ph.D. candidate in his lab, and Ting Shan Luk, Ph.D., at the Center for Integrated Nanotechnologies, Sandia National Laboratories—have created a new sensor that takes aim at this problem.

Described in a study published in Advanced Materials in January, the sensor uses surface-enhanced infrared absorption (SEIRA) spectroscopy.

Spectroscopy involves studying how light interacts with matter. While infrared absorption spectroscopy has been around for more than 100 years, researchers are still trying to make the technology more powerful, affordable and versatile.

As the name suggests, these sensors work with light in the mid-infrared band of the electromagnetic spectrum, which is used by remote controls, night-vision goggles and other products.

The new sensor consists of several arrays of tiny rectangular strips of gold. Engineers dipped the strips in 1-octadecanethiol, which is a chemical compound (often abbreviated as ODT) that they chose to identify.

Researchers then added a drop of liquid metal—in this case, gallium—to serve as the sensor's base. Lastly, they placed a thin glass cover on top to form a sandwich-like structure.

The design of the sensor, with its layers and cavities, creates what researchers call a "nanopatch antenna." The antenna both funnels molecules into the cavities and absorbs enough infrared light to analyze biological and chemical samples.

"Even a single layer of molecule in our sensor can lead to a 10% change in the amount of light reflected, whereas a typical sensor may only produce a 1% change," says Liu, who adds that the team will continue to refine the sensor with the goal of using it for bioanalytical sensing and medical diagnostics applications, such as sensing biomarkers linked to certain diseases.

After measuring the ODT, the researchers removed the liquid gallium from the sensor chip surface with a swab. This process allows the sensor to be reused, which could make it more cost-effective than similar alternatives.

"The structure of our sensor makes it suitable for point-of-care applications that can be implemented by a nurse on a patient, or even outside the hospital in a patient's home," he says. Explore further High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot-spots More information: Xianglong Miao et al, Liquid‐Metal‐Based Nanophotonic Structures for High‐Performance SEIRA Sensing, Advanced Materials (2022). DOI: 10.1002/adma.202107950 Journal information: Advanced Materials

Provided by University at Buffalo Citation: Tiny, reusable sensing chip could lead to new point-of-care medical tests (2022, February 9) retrieved 23 April 2022 from https://phys.org/news/2022-02-tiny-reusable-chip-point-of-care-medical.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Physics Forums | Science Articles, Homework Help, Discussion

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.